
Iran University of Science and Technology
Deep Learning (Spring 2019)

Ad classification using the text description on Divar
dataset

Mehrdad Nasser
Department of Computer Engineering

Iran University of Science
and Technology

mehrdad nasser@comp.iust.ac.ir

Abstract

In this project, we use different classification techniques for the task of classifying
advertisements in the Divar dataset. we first use a Support Vector Machine along
with bag-of-words as features and set a baseline. We then use a simple Artificial
Neural Network with word embeddings as features and study the effects of different
settings for these word embeddings on the performance of the model. Next, we
use Convolutional Neural Networks and experiment with various hyper-parameters
and find the best setting for this model. We also use Recurrent Neural Networks
and study the effects of applying different techniques to the last layer’s hidden
states. In the last part, we use a combination of CNN and RNN layers to see how
the performance changes.

1 Introduction

Text classification is the task of assigning a label to a sentence or a group of sentences based on their
features. There four main steps in text classification: Pre-processing, Feature extraction, Choosing a
classifier, Evaluation. Pre-processing step mainly consists of tokenization and generally removing
noise from the data. Noise could be numbers, certain punctuation marks, which all depends on the
dataset. this step also depends on the language, for example, in English, word are usually transformed
to lowercase while some languages don’t have lowercase or uppercase. Feature extraction is the task
of converting the text to a feature space suitable for using with classification models. These features
could be n-grams in the text or word embeddings. Choosing the appropriate classifier is probably the
most important step of the way. In the proposed method section we elaborate on the various methods
that we used in our project. We first evaluate traditional methods like Support Vector Machines(SVM)
and then use deep learning methods which have achieved surpassing results in almost every field of
machine learning. The last step is choosing an appropriate evaluation metric which depends on the
kind of task at hand.

2 Related work/Background

Before the reemerging of deep learning models, SVMs were the state-of-the-art models in text
classification. In 2014, [1] proposed a CNN-based model for text classification that outperformed
SVMs. This model used convolution and pooling layers to encode text to a vector and perform
classification using that vector. [4] uses a heirarchical attention mechanism to perform document
classification. This model uses attention for words and sentences seperately. This model is suitable

(LateX template borrowed from NeurIPS 2019)



for datasets whose instances are made up of several sentences. Since the dataset used in this project
is comprised of mainly small sentences, we didn’t explore that architecture.

3 Proposed method

There are four models that we use in this project: SVM, ANN, CNN, RNN and a combination of
CNN and RNN. For SVM we use different combination of n-grams as features which we discuss in
the next section. for the ANN architecture, we simply use the average of the word embeddings of the
words in a sentence as the feature of that sentence. For the CNN model we use the architecture used in
[1]. In this architecture, each sentence is represented by an S × d matrix where S is the length of the
sentence and d is the dimension of the word embeddings. One-dimensional convolutional layers of
length k and size N are used to extract features from the sentences. The one-dimensional convolution
layer acts like a sliding window of size k on the sentence which means that every k consecutive
words are convolved into a vector of size N. Features are then extracted using these one-dimensional
convolutional layers and these features are then passed through a pooling layer and then are used as
inputs for a fully-connected network to make predicitons. For the RNN method, we use a bi-directions
Long Short-term memory (bi-LSTM) network. RNNs process the input sequentially which means
they process each sentence one word at a time. This characteristic enables them to take in to account
the order in which words appear in a sentence, something that CNNs lack. In last architecture, we
make use of the feature extraction power of CNNs and the sequential nature of RNNs. We explore
two approaches for this model: Using a CNN to extract features and then feed these features to an
RNN, or using an RNN on the sentences and apply convolution to the hidden states of the last layer
of the RNN. We compare the results of these two approaches in the next section.

4 Results

We use the Divar dataset which consists of 947653 ads grouped into 6 main categories: Vehicles,
Electronic devices, Businesses, For the home, Personal, Leisure Hobbies. We used 236913 ads for
test and 710740 for training while preserving the relative size of the classes. The best setting we
found for pre-processing was to only do tokenization since removing punctuations or stemming or
removing numbers didn’t didn’t improve the results. We use the accuracy on the test data as our
metric. The results of our experiments for each are shown throughout this section.

4.1 SVM

For SVM, we use three sorts of features which are: Bag of uni-grams, Bag of uni-grams and bi-grams,
Bag of uni-grams and bi-grams and tri-grams. We also used three sets of values for these features
which are: Binary, Count, Tf-idf. Binary means that the value of a feature is 1 if the corresponding
n-gram exists in the text and 0 otherwise. Count means that we assign the number of occurences of
that feature in the text. Tf-idf means we use the Tf-idf of that feature in the text as the value of the
feature. Having three sets of features and three sets of values, we ran nine experiments in total. The
accuracies on test data for each setting can be seen in the table below.

Binary Count Tf-idf
Uni-gram 86.9% 86.92% 87.46%

Uni-gram, Bi-gram 87.14% 87.19% 88.59%
Uni-gram, Bi-gram, Tri-gram 86.82% 86.81% 88.46%

We see that using uni-grams and bi-grams as feature along with Tf-idf yields the best accuracy on
test data.

4.2 ANN

In this part, we used a simple ANN with 3 layers using the average of the word embeddings as the
feature for each instance in the training set. We also used Dropout and set the dropout rate to 0.3 and
also used Batch normalization. The most important factor here was the choice of initialization for
word embeddings. We tested three different scenarios: Randomly initializing embeddings, Using
pre-trained embeddings, Training embeddings on the training set. We trained word embeddings on

2



the training data using Cbow method.We used fastText [2] for pre-trained embeddings. The results
are reported in the table below.

embedding initialization accuracy
Randomly initialized embeddings 86.38%

Pre-trained embeddings 86.4%
Embeddings trained on training set 88.06%

We gained a 1.6 percent increase in accuracy when we trained our own embeddings on the training
data.

4.3 CNN

In our experiments with the CNN model, there were 2 main hyper-parameters that we needed to tune:
kernel lenght and the number of kernels. Kernel length is the size of the convolution sliding window
which means the number of consecutive words that are convolved into a feature vector and number of
kernels is the dimension of this vector. We first ran some tests using a only one kind of kernel and set
the number of kernels to 128 to find the best kernel length. We use global average pooling for all the
experiments because it resulted in better accuracy. The results are shown in the table below.

Kernel length accuracy
2 87.73%
3 88.00%
4 87.98%
5 88.00%
10 87.90%
30 87.73%

As we can see, smaller kernel lengths generally give better results. now we set kernel length to 3 and
test the effect of different number of kernels which is basically the dimension of the output feature
space. Results are shown below.

number of kernels accuracy
128 88.00%
256 88.16%
512 88.21%

1024 88.36%

We can see that increasing the kernel size increases the accuracy but it also increases the training
time. Training a network with a kernel size of 1024 takes 5 times longer that a network with kernel
size of 128. All the above experiments were done using only a single kind of kernel. We can use
multiple kernel lengths and then concatenate the output feature maps. we ran two experiments with
different combinations of kernel lengths and set the kernel length to 512 for a shorter training time.
Results are shown in the table below.

kernel lengths accuracy
2,3,4 88.46%
3,4,5 88.39%

We can see that using kernel length with a smaller average resulted in better accuracy probably
because we extract features from a smaller number of consecutive words on average.

4.4 RNN

For the RNN method, we used a bi-directional LSTM with 1 layer. We ran three main experiments
all related to how we handled the hidden states of the last layer. We first used only the hidden state of
the last time step. In the next experiment we used global max pooling on the hidden states and in the
last experiment we used an attention layer to calculate the weighted sum of all the hidden states. We
implemented the attention layer as it is mentioned in ?. The formula for the attention layer is shown
below:

3



A = tanh(H)

α = softmax(wTA)

O = HαT

where H denotes the hidden states of the last layer and α is the attention weight vector. Result of the
three experiments are shown below:

Model accuracy
Last time step hidden state 88.48%

Attention 88.87%
global max pooling 88.78%

As we can see using an attention layer yields the best accuracy. The reason is that by using attention
weight, we are giving different values to different time steps, and this is intuitively understandable
because some words play a more important role in prediction of the class, for example a word like
"is" is much less valuable than the word "sofa" when trying to predict the label of an ad.

4.5 Combination of CNN and RNN

In the previous two models, we saw that the CNN model outperformed the ANN model because of
its feature extraction capabilities and the LSTM model outperformed the CNN model because of its
sequential nature. In this section we experiment with two models which are both results of combining
LSTMs and CNNs. For the first model, we use a CNN to extract features from the input data and then
perform pooling to make the sequence smaller, and then feed the resulting vectors to an LSTM. In
our experiment, we used average pooling of size 5 which made input sequences 5 times shorter. The
main advantage of this model is that it makes the sequences smaller thus reduces the training time
of the LSTM but the LSTM doesn’t use all the information of the sequence because of the pooling.
The second model is comprised of an LSTM followed by a CNN. In this model the hidden states
of the last layer of the LSTM are fed to a CNN. The second model suffers from long training time
but performs better than the first model. The second model outperformed the attention based LSTM
model in the previous section. The results are shown in the table below:

textbfModel accuracy
CNN + LSTM + attention 88.46%

LSTM + CNN + average pooling 88.9%

5 Discussion

The model that we proposed in this project was a combination of and an LSTM and a CNN. CNNs
lack the ability to take advantage of the sequential properties of the input data. LSTMs on the
other hand specialize in sequential data but the real challenge is the way we use the hidden states
of all the time steps of the last layer. We used the feature extraction power of CNNs to extract
features from hidden states of the last layer of an LSTM and we improved the results compared to the
attention-based LSTM.

References

[1] Kim, Yoon (2014) Convolutional Neural Networks for Sentence Classification, Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751.

[2] Joulin, Armand , Grave, Edouard , Bojanowski, Piotr & Mikolov, Tomas (2016) Bag of Tricks for Efficient
Text Classification. arXiv preprint arXiv:1607.01759

[3] Zhou, Peng , Shi, Wei , Tian, Jun , Qi, Zhenyu , Li, Bingchen , Hao, Hongwei & Xu, Bo (2016) Attention-
Based Bidirectional Long Short-Term Memory Networks for Relation Classification. Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 207–212.

4



[4] Yang, Zichao , Yang, Diyi , Dyer, Chris , He, Xiaodong , Smola, Alex & Hovy, Eduard (2016) Hierarchical
Attention Networks for Document Classification. Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1480–1489

5


	Introduction
	Related work/Background
	Proposed method
	Results
	SVM
	ANN
	CNN
	RNN
	Combination of CNN and RNN

	Discussion

