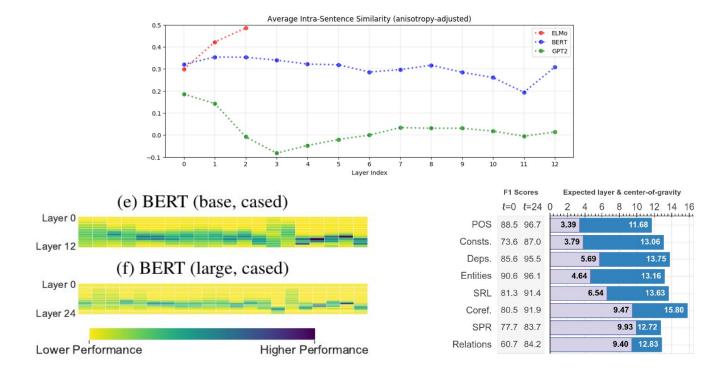
The Convexity of BERT: From Cause to Solution

Final Report - Deep Learning Project

S. M. Ali Modarressi Hosein Mohebbi

Introduction: SentEval Probing Tasks

Layer	SentLen (Surface)	WC (Surface)	TreeDepth (Syntactic)	TopConst (Syntactic)	BShift (Syntactic)	Tense (Semantic)	SubjNum (Semantic)	ObjNum (Semantic)	SOMO (Semantic)	CoordInv (Semantic)
1	93.9 (2.0)	24.9 (24.8)	35.9 (6.1)	63.6 (9.0)	50.3 (0.3)	82.2 (18.4)	77.6 (10.2)	76.7 (26.3)	49.9 (-0.1)	53.9 (3.9)
2	95.9 (3.4)	65.0 (64.8)	40.6 (11.3)	71.3 (16.1)	55.8 (5.8)	85.9 (23.5)	82.5 (15.3)	80.6 (17.1)	53.8 (4.4)	58.5 (8.5)
3	96.2 (3.9)	66.5 (66.0)	39.7 (10.4)	71.5 (18.5)	64.9 (14.9)	86.6 (23.8)	82.0 (14.6)	80.3 (16.6)	55.8 (5.9)	59.3 (9.3)
4	94.2 (2.3)	69.8 (69.6)	39.4 (10.8)	71.3 (18.3)	74.4 (24.5)	87.6 (25.2)	81.9 (15.0)	81.4 (19.1)	59.0 (8.5)	58.1 (8.1)
5	92.0 (0.5)	69.2 (69.0)	40.6 (11.8)	81.3 (30.8)	81.4 (31.4)	89.5 (26.7)	85.8 (19.4)	81.2 (18.6)	60.2 (10.3)	64.1 (14.1)
6	88.4 (-3.0)	63.5 (63.4)	41.3 (13.0)	83.3 (36.6)	82.9 (32.9)	89.8 (27.6)	88.1 (21.9)	82.0 (20.1)	60.7 (10.2)	71.1 (21.2)
7	83.7 (-7.7)	56.9 (56.7)	40.1 (12.0)	84.1 (39.5)	83.0 (32.9)	89.9 (27.5)	87.4 (22.2)	82.2 (21.1)	61.6 (11.7)	74.8 (24.9)
8	82.9 (-8.1)	51.1 (51.0)	39.2 (10.3)	84.0 (39.5)	83.9 (33.9)	89.9 (27.6)	87.5 (22.2)	81.2 (19.7)	62.1 (12.2)	76.4 (26.4)
9	80.1 (-11.1)	47.9 (47.8)	38.5 (10.8)	83.1 (39.8)	87.0 (37.1)	90.0 (28.0)	87.6 (22.9)	81.8 (20.5)	63.4 (13.4)	78.7 (28.9)
10	77.0 (-14.0)	43.4 (43.2)	38.1 (9.9)	81.7 (39.8)	86.7 (36.7)	89.7 (27.6)	87.1 (22.6)	80.5 (19.9)	63.3 (12.7)	78.4 (28.1)
11	73.9 (-17.0)	42.8 (42.7)	36.3 (7.9)	80.3 (39.1)	86.8 (36.8)	89.9 (27.8)	85.7 (21.9)	78.9 (18.6)	64.4 (14.5)	77.6 (27.9)
12	69.5 (-21.4)	49.1 (49.0)	34.7 (6.9)	76.5 (37.2)	86.4 (36.4)	89.5 (27.7)	84.0 (20.2)	78.7 (18.4)	65.2 (15.3)	74.9 (25.4)


Table 2: Probing task performance for each BERT layer. The value within the parentheses corresponds to the difference in performance of trained vs. untrained BERT.

Introduction: SentEval Probing Tasks

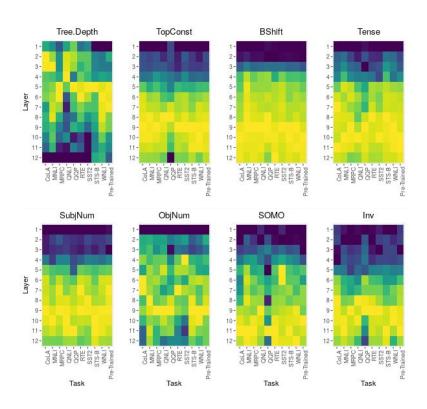
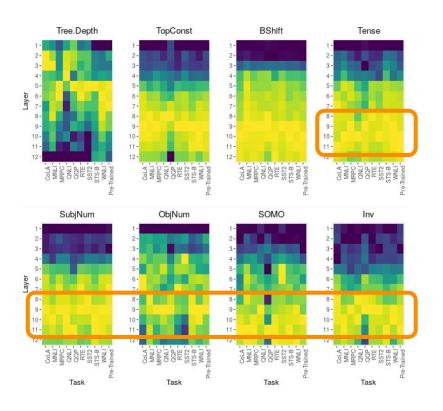
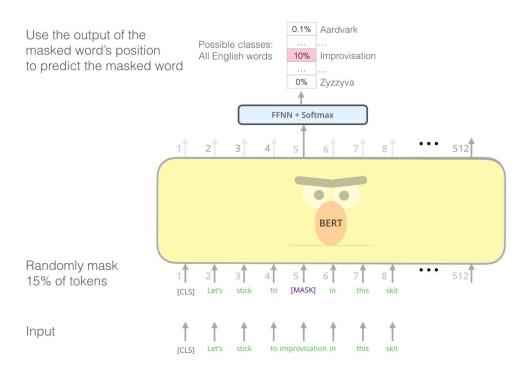

			Tense (Semantic)	SubjNum (Semantic)	ObjNum (Semantic)	SOMO (Semantic)	CoordInv (Semantic)
			82.2 (18.4)	77.6 (10.2)	76.7 (26.3)	49.9 (-0.1)	53.9 (3.9)
			85.9 (23.5)	82.5 (15.3)	80.6 (17.1)	53.8 (4.4)	58.5 (8.5)
			86.6 (23.8)	82.0 (14.6)	80.3 (16.6)	55.8 (5.9)	59.3 (9.3)
			87.6 (25.2)	81.9 (15.0)	81.4 (19.1)	59.0 (8.5)	58.1 (8.1)
			89.5 (26.7)	85.8 (19.4)	81.2 (18.6)	60.2 (10.3)	64.1 (14.1)
			89.8 (27.6)	88.1 (21.9)	82.0 (20.1)	60.7 (10.2)	71.1 (21.2)
			89.9 (27.5)	87.4 (22.2)	82.2 (21.1)	61.6 (11.7)	74.8 (24.9)
			89.9 (27.6)	87.5 (22.2)	81.2 (19.7)	62.1 (12.2)	76.4 (26.4)
			90.0 (28.0)	87.6 (22.9)	81.8 (20.5)	63.4 (13.4)	78.7 (28.9)
			89.7 (27.6)	87.1 (22.6)	80.5 (19.9)	63.3 (12.7)	78.4 (28.1)
			89.9 (27.8)	85.7 (21.9)	78.9 (18.6)	64.4 (14.5)	77.6 (27.9)
			89.5 (27.7)	84.0 (20.2)	78.7 (18.4)	65.2 (15.3)	74.9 (25.4)

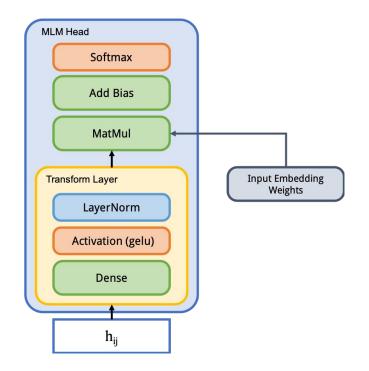
Table 2: Probing task performance for each BERT layer. The value within the parentheses corresponds to the difference in performance of trained vs. untrained BERT.

Related Work



On Fine-tuned BERT Probing Results

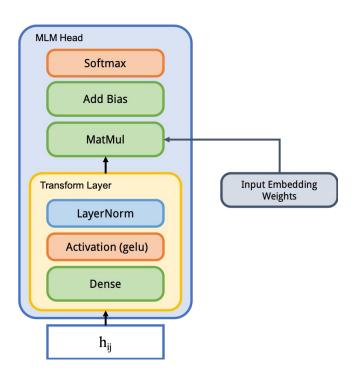

- Fine-tuned BERT using GLUE tasks
- Probing [CLS] Representations in each layer using diagnostic classifiers


On Fine-tuned BERT Probing Results

- Fine-tuned BERT using GLUE tasks
- Probing [CLS] Representations in each layer using diagnostic classifiers

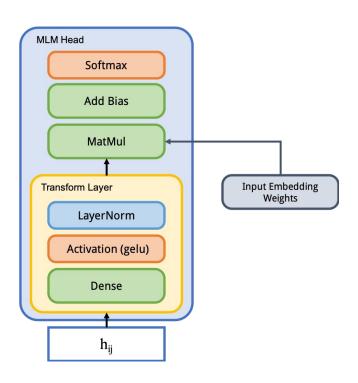
BERT MLM Pre-Training

BERT MLM Pre-Training

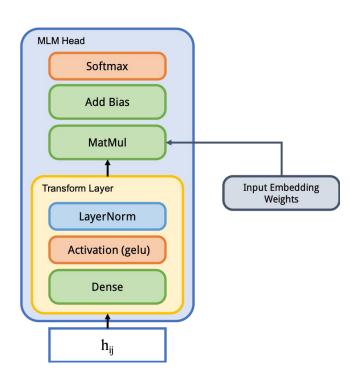

Static Embeddings

Contextualizing Layers

Layers

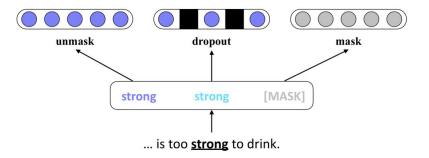

De-Contextualizing

MLM Head (Similarity Measurement)



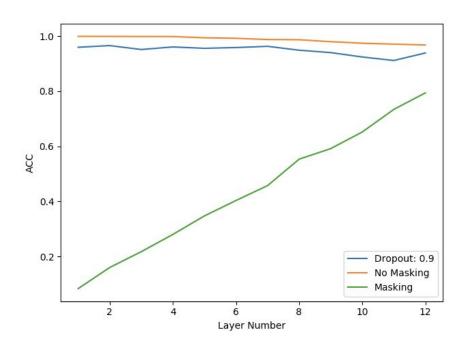
Using MLM Head

o Pre-Trained?



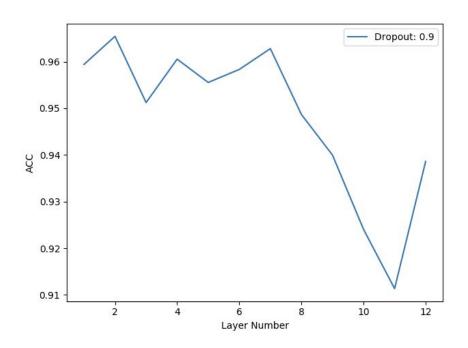
- Using MLM Head
 - Pre Trained?
 - Train for each layer's representation
 - Using [MASK]?

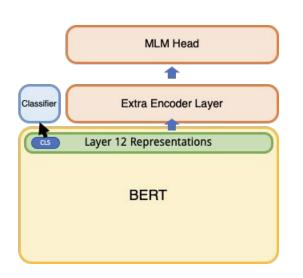
Using MLM Head


- Pre Trained?
- Train for each layer's representation
 - **Using [MASK]?**
 - Without Masking?

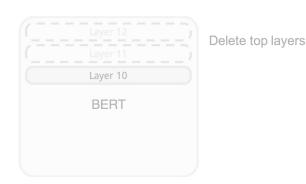
Using MLM Head

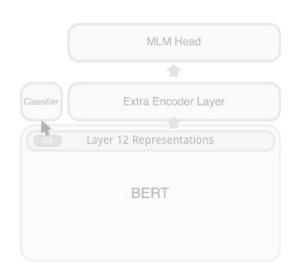
- Pre Trained?
- Train for each layer's representation
 - **Using [MASK]?**
 - Without Masking?
 - Highly DropoutedEmbeddings

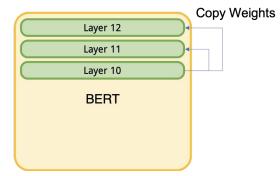

BERT MLM Probing MethodResults

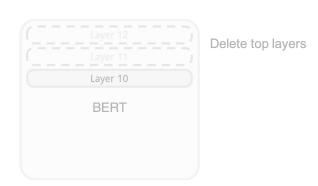

Using MLM Head

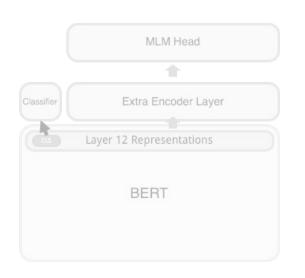
- Pre Trained?
- Train for each layer's representation
 - **Using [MASK]?**
 - **Without Masking?**
 - Highly DropoutedEmbeddings

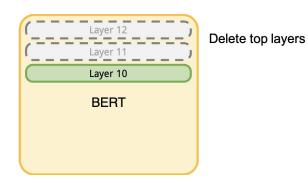

BERT MLM Probing MethodResults

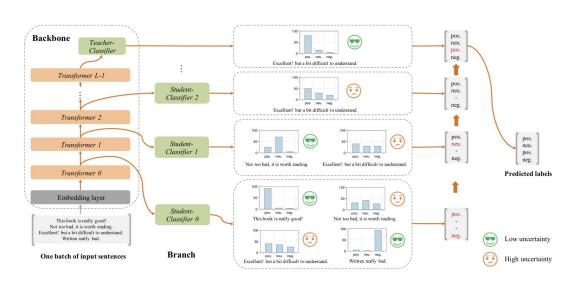


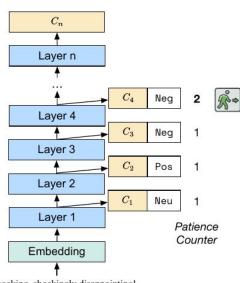

- Initial layers are more similar to the static embeddings
- Similarity decreases by advancing through the network
- Last layer regains similarity (lower contextuality)











Model	CoLA	MRPC	STS-B	RTE	Average
BERT(base, uncased)	58.73	85.29	87.37	72	75.84
Multi-objective fine-tuning	59.83	83.33	89.86	70.31	75.83
Multi-objective + extra Layer fine-tuning		84.8	89.59	66.43	75.35
Coping last layers fine-tuning	58.8	86.76	88.33	63.18	74.26
Model	CoLA	MRPC	STS-B	RTE	Average
BERT(base, cased)	58.71	84.64	87.9	71.48	75.68
Dropping last two layers fine-tuning	55.27	85.05	85.84	67.15	73.32

Table 1: Results on GLUE dev sets. CoLA is evaluated using Matthew's Correlation. STS-B is evaluated using Pearson's correlation coefficient. MRPC and RTE are evaluated using accuracy.

Other Recent Methods...

It's shocking, shockingly disappointing!

FastBERT (Liu et al., ACL 2020)

BERT Loses Patience (Zhou et al., 2020)

Thank You for your Attention