

DYNAMIC COATTENTION NETWORK FOR QUESTION ANSWERING

Mahsa Razavi, Houman Mehrafarin

Department of Computer Engineering

Iran University of Science

and Technology

Mahsasadat_razavi@comp.iust.ac.ir, H_mehrafarin@comp.iust.ac

Abstract

Several deep learning models have been proposed for question answering. However,

due to their single-pass nature, they have no way to recover from local maxima

corresponding to incorrect answers. The Dynamic Coattention Network [1] first fuses co-

dependent representations of the question and the document in order to focus on relevant

parts of both. Then dynamic pointing decoder iterates over potential answer spans. This

iterative procedure enables the model to recover from initial local maxima corresponding

to incorrect answers.

1 Introduction

Question answering (QA) systems are expecting strong increases in daily use now and in near future.

This formulates a machine learning problem where the model receives a question and a passage and

is tasked with answering the question using the passage. The training data consists of (question,

paragraph, answer span) triplets. Due to the nature of the task, combining the information contained

in the passage with the question posed is paramount to achieve good performance.

We implemented the Dynamic Coattention Network (DCN)1, illustrated in Fig. 1, an end-to-end

neural network for question answering. The model consists of a coattentive encoder that captures the

interactions between the question and the document, as well as a dynamic pointing decoder that

alternates between estimating the start and end of the answer span. To evaluate our model, we will

use F1 score.

1 Code available on github at https://github.com/hmehrafarin/DCN.git

mailto:Mahsasadat_razavi@comp.iust.ac.ir
mailto:H_mehrafarin@comp.iust.ac
https://github.com/hmehrafarin/DCN.git

Figure 1 Overview of the Dynamic Coattention Network.

2 Related work/Background

Various neural models have been used to implement question answering systems. We discuss two

of them here. It is worth noting that most successful models have used long short term memory units

(LSTMs) to capture interactions over long sequences of words (necessary for context paragraphs

that may run for hundreds of words.) Successful models also use some sort of attention mechanism,

to capture relevance of words in the question and context paragraph as an intermediate step to

answering the question.

2.1 Seq2seq Model

Our baseline is a simple seq2seq QA model. We need to know whether our attention mechanism

improves the simple seq2seq QA model, thus we decided to compare the DCN model to a QA model

consisting of 2 Bi-Directional LSTMs (one for answer spans and another for documents).

2.2 Dynamic Chunk Reader

Yang Yu et al[2]. use a similar attention mechanism (they calculate attention values for each pair of

words in the question and context paragraph) but they aggressively filter possible answers by

selecting an answer from candidate “chunks”. The candidate chunks are determined by linguistic

parsing of the roles (e.g. parts of speech) that the various words play in a sentence. Considering only

these candidates substantially increases the training rate but leads to some correct answers not even

being considered. But the authors report the correct answer was among the candidate chunks 92%

of the time.

3 Proposed method

3.1 Preprocessing

The original data is available in Jason format. We first extract questions, document, answer and
answer span files from the original json file. Then we used GloVe embedding layer with dimension
of 100 to create vector of ids.

3.2 Model Architecture

Our model is purely based on the paper “Dynamic Coattention Networks for Question Answering”

with some changes in the base model. For implementing this project, we used TensorFlow 2.0 and

model sub classing for creating the Encoder, Coattention Encoder, Decoder and Highway Maxout

Network (HMN). This part will be divided into 4 separate parts to cover each part independently.

3.2.1 Encoder

In this part we encode the input questions and documents with 2 different embedding layers with

pre-trained GloVe embedding weights. To keep the model’s training simple, the training of these

two layers are set to False. We then pass these 2 embedded inputs to an LSTM and pass the question

output of the LSTM to a dense layer to get �́�. Now we are ready to move on to the next layer called

the coattention layer.

3.2.2 Coattention Encoder

This part is rather important as it is the main part of this paper and model. The basic idea behind this

layer is to attend to both questions and documents simultaneously time rather than attending to each

separately. This lets the model to comprehend both questions and documents at the same time. Now

we will proceed to the implementation. We first create an affinity matrix by multiplying the

document states from the LSTM encoder and �́�. The affinity matrix is then used to create attention

weights 𝐴𝑄, 𝐴𝐷 by applying softmax on the affinity matrix. Now we have the attention vectors of

both documents and questions. Thus, we can easily create attention context 𝐶𝑄 by multiplying

𝐴𝑄 and the document states. 𝐶𝑄 is actually attending to the documents using the attention weights

from the questions. We then concatenate 𝐶𝑄 with �́� and apply the same strategy to the concatenation

output, only this time with the attention weights from the documents. As of now, we have attended

to both questions and documents simultaneously, all we need is to pass them to a Bi-LSTM layer

and we would be ready for decoding. Below is the summary of this part.

Figure 2 Coattention Encoder

3.2.3 Decoder

Due to the nature of SQuaD dataset, a Question-Answer pair, there may exist several intuitive

answer spans within the document, each corresponding to a local maxima. This is solved by iterating

between the prediction of start and end indexes in the document. This iterative procedure allows us

to recover from the local maximum and lead us to the optimum answer. The decoder takes the

coattention encoder states as its input and estimates the current start and end position. This is done

by passing by the current coattention encoder states to a GRU cell. This is the initial estimation of

start and end positions. This process repeats itself four times, to give the model that dynamic

positioning behavior. In each iteration the GRU cell creates a cell state ℎ𝑖, ℎ𝑖 is then passed to the

Highway Maxout Network alongside two other parameters, starting position encoding and the

ending position encoding. This step is for predicting the next starting and ending position encodings.

Highway Maxout Network layer is used within the decoder and will be covered in the following

part.

Figure 3 Dynamic Decoder

3.2.4 Highway Maxout Network

This part is proposed by the paper and is combined of two parts, the Highway Network[3] and

Maxout Networks. Its soul purpose is to predict 𝛼𝑖and 𝛽𝑖, which is the starting and ending position

respectively. There are two separate networks with same architectures for predicting 𝛼𝑖 and 𝛽𝑖. In

this layer, we first create a vector by concatenating GRU cell state, ℎ𝑖 , start and end position

encodings. Highway Maxout Network basically consists of 4 dense layers, however we have

implemented these dense layers manually and did not use tf.keras.layers.Dense to better convey the

purpose of the authors. Firstly, we pass the created vector to a dense layer with hyperbolic tangent

activation function. Secondly, we pass the concatenation of the first layer’s output and GRU cell

state to another dense layer, however, this time we do not use any activation functions because we

need to apply reduce max on the output. Thirdly, we pass the previous output to another dense layer

and apply reduce max on the output. Lastly, we concatenate the outputs of the second and third layer

and pass them to a final dense layer. The last layer chooses the index with maximum probability to

be the star/end position.

The intuition behind using such model is that the QA task consists of multiple question types and

document topics. These variations may require different models to estimate the answer span. Maxout

provides a simple and effective way to pool across multiple model variations.

4 Results

The data used in this project is the SQuaD2 1.1 dataset. The reason behind this choice is that squad

2.0 offers unanswered questions, which the model has to decide not to answer them. However, our

model is basically a question answering model with a different attention mechanism and it is not

focused on this specific task. As result we keep our model simple and train it with SQuaD 1.1

dataset.

The model has been trained on a small fraction of the original SQuaD dataset to avoid resource

exhaustion. The metrics for this model is MSE to show the distance between the true indexes and

the predicted indexes of the answer span.

The following is the graph provided by TensorBoard:

Figure 4 Model Graph

Time was a major obstacle for us in training, improving, and testing our models. Our model took

hours per epoch to train on the GPU, which made it extremely difficult to test incremental

improvements or even tune hyperparameters.

2 https://www.kaggle.com/stanfordu/stanford-question-answering-dataset

https://www.kaggle.com/stanfordu/stanford-question-answering-dataset

With that said, the greatest limiting factor of our experimentation was out-of-memory errors. In

hindsight, we should have used smaller GloVe vectors or limited the context paragraph size to only

a few hundred, to be able to run much larger batches.

Model F1-score

DCN 70.3

Baseline (Seq2Seq) 61.7

5 Discussion

We implemented the Dynamic Coattention Network, an end-to-end neural network architecture for

question answering. The DCN consists of a coattention encoder which learns co-dependent

representations of the question and of the document, and a dynamic decoder which iteratively

estimates the answer span. We conclude that the iterative nature of the model allows it to recover

from initial local maxima corresponding to incorrect predictions. According to the main paper, on

the SQuAD dataset, the DCN achieves the state of the art results at 75.9% F1 with a single model.

The DCN significantly outperforms all other models.

The results show that our DCN model outperforms the baseline model. As mentioned earlier the

DCN is capable of finding the optimum answer to the question and recover from the local maxima.

Our baseline’s performance is highly dependent on the length of the document. The longer the

document, the worse the results become. However, due to DCN’s attention mechanism, the

performance would be the same regardless of the document’s length. To be more specific, the

---- train loss

---- val loss

Coattention encoder is robust to the document’s length because it focuses on parts of the

document, which are relevant to the question. As a result, the document’s length would not be an

issue to this model. Our dataset consists of many types of questions and documents, questions with

“when”, “what” and the more complex type “why”. The results show us that, these different

question types are handled pretty well. This is mostly because we use the HMN network in our

model. As mentioned earlier the HMN handles different question and document types with

different models and pooling between them. Moreover, increasing the pool size of the Highway

Maxout Network, improves the results. Our result is with pool size of 16.

6 Contributions

All group members collaborated equally on all parts of the project. We spent dozens of hours

together working on this project, and we all contributed extensively to the design, coding, and

debugging processes.

References

[1] Xiong Caiming, Zhong Victor, Socher Richard (2017) Dynamic coattention networks for

question answering. In 5th International Conference on Learning Representations, ICLR 2017.

[2] Yu, et al. “End-to-End Answer Chunk Extraction and Ranking for Reading

Comprehension.”IBM Watson.2016.https://arxiv.org/pdf/1610.09996.pdf

[3] Srivastava, et al. “Highway Networks.”The Swiss AI Lab

IDSIA.2015.https://arxiv.org/pdf/1505.00387.pdf

